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1. The Signal Set and Optimal Receiver
Consider the set of QM signals:
@ () (m=1,2,- -~ ,M;q=0,1,2, - -~ ,O—1)(0=¢=T),
(1)

all of which have the same energy ST and whose nor-
malized inner products are

r Oforallg,r ifms=tn

P, =g | @)= @)dt = _
ST o cos g_w_(g___r_) if m=n

Q
@
Examples of such signal sets are
mi

x (t) = (28)*%sin (—2—%‘“ + %ﬂ) (0=t=T) (32)
xf,‘,” (t) = $m (t) sin { wof + —27"51> (Oé = T) (3b)

where s,, (£) is a set of M equal energy orthogonal signals
and w, is a high enough frequency that the integral of
the double frequency terms is negligible; or where sy (£)
is a set of two-level orthogonal signals each consisting
of M symbols and w, = 2xM/T.

Other examples are the algebraically generated poly-
phase code signals of Ref. 1.* We shall call this class of
signals Q-orthogonal, since it is an obvious generalization
of the class of biorthogonal signals, which corresponds
to O =2.

Clearly the bandwidth occupancy (Ref. 2, pp. 3-12) of
any signal set in this class is:
W = M/T cps, 4

while the transmission rate in bits per second, if all sig-
nals are equiprobable, is

R = log, (MQ)/T. ()

The parameter normally constrained in a digital com-
munication system is the bandwidth-to-rate ratio

W M
B lom M 10z Q0 6)

1Also to be presented at Symposium on Time Varying Channels,
June 5 through 9, 1965, Boulder, Colorado.
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The optimum receiver, when the signal set consists of
MQ equal energy equiprobable signals in the presence
of additive white Gaussian noise, consists of a set of cor-
relations and a comparator and decision device which
decides in favor of the signal which maximizes

f " @0 @) de )

where y () is the received waveform during the given
interval. Tt is well known that the performance of the
communication system depends only on the ratio of the
energy ST to the noise (one-sided) spectral density, N,
and the (MQ/2) inner products pZ7,. Thus, without loss

of generality, we may assume henceforth that the signal
set (3a) is used. Then

[)T yft) x (6 dt = (25)1,@[: y () sin (Z_TT"_"E i 2_8]_) g

A 27rq ~ 27rq
= Y, COS—— + Y SID—=—
YneoST " T IO
(m:}‘)?‘)...7M; q:O’l’z’-v-,Q——l) (8)
where
a T . 2xmi
O = (2S)% / y (£) sin 7’,” dt (8a)
and
~ T 2mmit
Um = (28)% / y (£) cos T ¢ dt (8b)
or

m=12---,M; g=012---,0-1). (9

Thus, it is clear that only 2M analog correlators, which
generate the quantities of Egs. (8a) and (8b), are neces-
sary and that the remainder of the computation which
leads to Eq. (9) can be performed by a special purpose
digital computer.

278

2. A Sub-Optimal Receiver and Its Performance

To obtain a closed-form expression for the perform-
ance of the optimal receiver is a formidable and seem-
ingly insurmountable task (Ref. 1). However, the follow-
ing sub-optimal (but possibly nearly optimal) receiver is
suggested by Eq. (8). The decision consists of two steps:

(1) Choose m so as to maximize (5% + 72

(2) With this value of m, choose g so as to maximize

27rq ?/'m\
cos| —— —tan* 5},
( Q ym)

or equivalently to minimize

21rq ?;m
— — tan " x—
( Q Ym

Such a receiver is easily mechanized by the parallel com-
bination of M devices, one of which is shown in Fig. 1.

- A
. Ym
yin T S >
ﬂ—%} o <
H
. 2amf 2 .
{2512 sin <2 *_é - 5252
N 7 |
2
(%) S a7 = =4
_‘_Tz ; /
(25 cos 7;.’"

Fig. 1. An element of the sub-optimal receiver

The receiver bank resembles the optimal system for
noncoherent reception. In fact, the first step in the pro-
cedure is exactly the same. The second step consists es-
sentially of a phase estimation of the received phase angle
corresponding to the largest m, comparison with each
possible transmitted phase, and selection of the nearest
one as the most likely. It is clear that if the signal set
(3b) were used instead of (3a), the local signal inputs to
the multipliers would be replaced by sn (£) sinwet and
8m () COS wyt.

The error probability for this sub-optimal receiver
(which, therefore, must be an upper bound on the error
probability for the optimal receiver) is readily obtained.
Without loss of generality, we may assume that signal
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x{® (¢} was transmitted, since the signal set exhibits total ALy rrr . 2 2
symmetry. Thus, the probability of correct detection is Var (yn) = 2S E n () sin n (u) sin = du dt
2nmi 2mnu
P, =Prob (r, = Maxr,, |0:] <=#/Q) 10) [ [ 5 8(t—w)sin o du dt
_ N,ST
where 9
= ()2 + 2%
" = (¥ + 52) Similarly,
and N.S
o Var (§n) = ; T
f,n — tan™ (#) .
Ym and
But since x{® () is assumed sent and the additive noise, = Cov (@m,‘g,.) =0 (m=12 -, M;n=12,---,M).
n(t) is a zero-mean white Gaussian process of one-sided
spectral density, N,, Thus, the variables r,, are mutually independent, and all
- 9m except r; have identical Rayleigh probability density
E (i) = (284 E / y (t) sin T tdi functions. From Eq. (7) we have, after appropriate trans-
i

formations (Ref. 3)

— (28)1/%E[)T[(2S)l/zsm%7:i + n(t)] P, = L/q da,/ p(al,rl)drlm 2 pra)dr,  (11)

. — h
X sin T tdt {O (m 1) where
T 2 27'm Tm 2 f 0
m%yﬂ%WE/ y (2) cos tdt p(rm) = NST P\ " N,sT ) TOr™m>
° 0 forr, <0
T 2 > o
= (284 E / [(25)% sin—,;:—t +n (t):l n__ f_nt (ST)? — 2STr, cos.4,
0 p(61,7) = {wN,ST P NoST
o (forr,=0and ~==6, <x).
X cos tdt =0 .
T 0 otherwise

Thus,

_fTe R i+ (8T)* — 28T, cos 8, _ —r} -2
P.= [r/q d&/ TN.ST exp[ NST ][l exp _NOST] dr,
2 M1
-rN/ d&/ rexp[ (——- (r2+l~—2rcos€)}[l—exp( TST)] dr
ST -1 _ -
7rN0 /_M)dﬁ/ rexp [( )(r2 +1—2cos 6)] 1§o (—1)"( k 1) exp( f;\rZST) dr
M~—1 ak
5 (M) ()
e k+1

%/ — o
exp (‘_——") 5
X k+1 % a % acos?d
[ﬂ-/o o [1 + (k T l) 0089{1 + erf(!:m:' COSG)} exp( k T1 )] dg (12)
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where « = S§T/N,. The integral in the kth term of the
sum is the probability distribution P (|8 < 7/Q) of the
phase angle of a sinusoid in additive Gaussian noise for
signal-to-noise ratio o/(k + 1) (Ref. 3).

A lower bound on P, (and consequently on upper
bound on the error probability Py) is obtained by neg-
lecting all but the first two terms. The first term by itself
is an upper bound on P, (lower bound on Pg) for this
sub-optimal receiver. In the next part of this article, we
show that this is a lower bound on Py also for the optimal
receiver.

3. Bounds on Error Probability
for the Optimal Receiver

In Part 1, we showed that the optimum receiver selects
g and m so as to maximize Eq. (6). Without loss of gen-
erality, let us assume once again that x{* (t) was trans-
mitted. Now using the notation of Eq. (7), we see from
(6) that if

7, > Max ry,

mzL

but |6, > =/Q, we shall have the correct m but the
wrong g. On the other hand, if

71 <1'l - Max Ty
m#l

we may still be correct if 7, cos 6, > 7, and |8,] <=/Q.
However, if |0,| > =/Q, we shall always have an error.
Thus, a lower bound on the error probability for the
optimum receiver is

BE>Pmb(w4;>6). (13)

The error probability for the sub-optimal receiver is
clearly an upper bound to that for the optimal receiver.
Thus,

p(G,(X)d6<P5~

101> 7/
M-r(—1) /M — 1 —ak P
<1 k§,k+1( k )eXP k+1)/p(0’k+1>d6
lel<7/Q
M__ —

</ p(0,a)dd +( 5 l)exp(—zg)/p(e,g)dﬁ

jei>m/Q jol<7/Q (14)
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where

p(ﬂ, 'Y) =

exp(—7v)

o {1+ (ry)*cos @ [1 + erf (y% cos ¢)] exp (y cos® )}

is the probability density function of the phase of the
sum of a fixed phase sinusoid and Gaussian noise with
SNR = v.

Finally, using a result of Arthurs and Dym (Ref. 4), we
may bound the integrals in Eq. (11) by

1 1% ain L - % sin -
2erfc(y zst></p(0,y) de \erfc(y sin Q)

1o]>7/Q
so that
[ M -
% erfe (a‘f‘z sin -é—) < Pg < erfe (a‘f‘z sin 6) “+ ( B) Y
—o a\% =
X exp (—2—> erf [(§> sin 6)] (15)
where

ST S
a— —Z\—E = —Z\—];I—{logg (MQ)

and where R = 1/T} is the rate in bits per second. Letting
F=N.,R 8%

1 k
M=o (‘“—*ﬁ J@)

and bounding the complementary error function by

2\% e /2 1 x I\ Y g-o?/2
(;) = (1 - ;5) < erfe (—2’;;) < (‘;) " (16)

yields the result that
ek 1 e»k e—k(B—z)/zﬁ
s (- m) <t <(gam) * e O

Consequently, in order to achieve small error probabil-
ities, it is imperative that k be reasonably large and, since

1 k
v = ge (garero):




Q must be small compared to M. Note that if

S
ﬁ’:mlog‘22>2,

the upper and lower bounds on the error probability can
be made arbitrarily small as k and Q are increased.

B. Another Look at the Optimum
Design of Tracking Loops

R. C. Tausworthe

In 1955, Jaffe and Rechtin (Ref. 5) published the first
sophisticated attempt at characterizing the optimum
design of phase-locked loops. In the course of their work,
they used an example which specified the transfer func-
tion of a loop best able to follow a frequency-step input
insofar as minimizing transient error and phase noise are
concerned. For simplicity, they assumed that the initial
phase error was zero; the resulting filter function was one
with one real zero and two complex poles, at a damping
factor { =0.707, regardless of the initial frequency
offset. The example was meant only to illustrate the
optimization method, but since that time most systems
have been designed using the parameters set by the
example.

By using the same technique developed in the Jaffe-
Rechtin paper, but assuming that the initial phase angle
is random, a different result appears. Damping in the
loop is always greater than ¢ = 0.707, and in all cases of
practical interest, the system is overdamped. (Both poles
lie on the negative real axis.)

Because the initial phase error is not generally known
a priori (thus random), this latter design is one which
seems to be of more practical use in most tracking
applications.

1. Optimum Loops for Random Doppler Tracking

There are two sources of error during the initial acqui-
sition of phase lock in a tracking receiver. First, there is
a transient error as the system passes from its initial state
to the steady-state tracking state. Second, there is phase
jitter due to the presence of noise at the loop input. The
technique developed by Jaffe and Rechtin was a Wiener
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optimization of the linearized loop, but with a constraint
on the total mean-square transient error. Following this
technique, the optimum loop transfer function was found
to be specified by the formula

XED(s)D(—s)
Hone ) = a7 L 1. o

[¥ (91
where
¥ (s) = A2.6D(s) D(—s) + N,/Az
D (s) = doppler-phase Laplace transform

A? = Lagrange multiplier {to be evaluated)
= loop input carrier power
N, = double-sided noise spectral density
& = expectation operator

[ 1* = left half-plane “square-root” factorization oper-
ator

[ ]~ = right half-plane “square-root” factorization op-
erator

[ 1 = L&, the physical-realizability operator

The reader is referred to Ref. 3 or 5 for further explana-
tion of the operators above and for the development
of Eq. (1).

The optimization of interest is concerned with finding
H,p: (s) when the input doppler d (¢) has the form

d(t) = 0, + o, @)

where 8, is a uniformly distributed phase angle, and
where w, is a random variable whose mean-square value
is 03. The Laplace transform of d (¢) is

90 wg
D(s) = Y + rE 3
and hence the expected value of D (s) D (—s) is

&1D(s)D(— s)]——-—(——-—-) + (03) (__>

The first order of business is the factorization of ¥ (s):
T2A2ZA2 Az AZQ?, +
A.s-2 N, )C TN,

UNG[ L AN 2AQ\%  AAQ,
= as| S\ sN, tNm ) STENE |

®)

REGIN
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